Education

KwaZulu-Natal Department of Education

MATHEMATICS P2
 MARKING GUIDELINE
 PREPARATORY EXAMINATION
 SEPTEMBER 2018

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

This marking guideline consists of 14 pages.

QUESTION 1

1.1	strong positive trend	$\checkmark \mathrm{A}$ strong positive	(1)
1.2	$(38 ; 127)$	$\checkmark \mathrm{A}$ answer	(1)
1.3	$a=68,66$ $b=2,46$ $y=68,66 x+2,46 x$	$\checkmark \mathrm{A} \mathrm{a}=68,66$ $\checkmark \mathrm{~A} \mathrm{~b}=2,46$ $\checkmark \mathrm{CA}$ equation	(3)
1.4	$y=68,66+2,46(24)$ $=127,7$ $=127$	$\checkmark \mathrm{CA}$	(2)
	$\checkmark \mathrm{CA}$ answer	$[7]$	

QUESTION 2

2.1	$\begin{aligned} \text { Mean weight } & =\bar{x}=\frac{1443}{15} \\ & =96,2 \mathrm{~kg} \end{aligned}$	\checkmark A sum divided by 15 \checkmark CA answer (only if dividing by 15)	(2)
2.2	$\sigma=$ standard deviation $=11,27$	$\checkmark \checkmark$ AA answer	(2)
2.3	$\begin{aligned} & (\bar{x}-\sigma ; \bar{x}+\sigma) \\ & =(84,93 ; 107,47) \end{aligned}$ Therefore 2 scores are less than the standard deviation	\checkmark CA identify range \checkmark CA answer	(2)
2.4		\checkmark A min value 79 $\checkmark \mathrm{A}^{\mathrm{Q}_{1}}=89$ $\checkmark \mathrm{A} \mathrm{Q}_{2}=94$ \checkmark A Q3 $=107$ $\checkmark \mathrm{A}_{\text {max }}$ value $=113$	
2.5	$\begin{aligned} \mathrm{IQR} & =\mathrm{Q}_{3}-\mathrm{Q}_{1} \\ & =107-89 \\ & =18 \end{aligned}$	\checkmark CA difference \checkmark CA answer	(5) (2)
2.6	$\begin{aligned} \bar{x}-\text { median } & =96,2-94,00 \\ & =2,2 \end{aligned}$ Data is positively skewed.	\checkmark CA answer	(1)
			[14]

QUESTION 3

3.1.5	$\begin{aligned} \mathrm{m}_{\mathrm{CB}} & =\frac{1-(-4)}{4-(-1)} \\ & =1 \\ \text { Equation of line passing through A parallel to } \mathrm{BC} & =1 \\ y & =m x+c \\ 5 & =1(-4)+c \\ c & =9 \\ y & =x+9 \end{aligned}$	\checkmark A substitution into gradient formula \checkmark CA gradient value \checkmark CA gradient of Line parallel \checkmark A substitution of point $(-4 ; 5)$ \checkmark CA answer	(5)
3.2	$\begin{aligned} & \tan \theta=1 \\ & \theta=45^{\circ} \end{aligned}$	$\checkmark \mathrm{CA} \tan \theta=1$ \checkmark CA answer	(2)
3.3	$\begin{aligned} \mathrm{CE} & =\sqrt{\left(2-(-1)^{2}\right)+(2-(-4))^{2}} \\ & =\sqrt{9+36} \\ & =\sqrt{45} \\ & =3 \sqrt{5} \end{aligned}$ $\begin{aligned} \mathrm{AE} & =\sqrt{(2-(-4))^{2}+(2-5)^{2}} \\ & =\sqrt{36+9} \\ & =\sqrt{45} \\ & =3 \sqrt{5} \end{aligned}$ $\text { Area of } \begin{aligned} \triangle \mathrm{AEC} & =\frac{1}{2} \text { base } \times \text { height } \\ & =\frac{1}{2} \cdot 3 \sqrt{5} \times 3 \sqrt{5} \\ & =\frac{1}{2} \cdot 9 \times 5 \\ & =\frac{45}{2} \\ & =22,5 \text { units }^{2} \end{aligned}$	\checkmark CA answer \checkmark CA answer \checkmark CA Correct substitution into Area formula \checkmark CA Answer	$\begin{aligned} & \text { (4) } \\ & {[21]} \\ & \hline \end{aligned}$

QUESTION 4

4.1	$\mathrm{P}(6 ;-2)$	\checkmark A x-value \checkmark A y-value	(2)
4.2	$\begin{aligned} & 2 x-4=0 \\ & x=2 \\ & S(2 ; 0) \end{aligned}$	\checkmark A equating to 0 \checkmark A x-value	(2)
4.3	$\begin{aligned} & A \hat{B} C=90^{\circ} \quad \text { Angle in a semi-circle } \\ & m_{B C}=-\frac{1}{2} \quad \mathrm{AB} \perp \mathrm{BC} \\ & y=m x+c \end{aligned}$	\checkmark A Statement \checkmark A gradient of BC	
	$\begin{aligned} & 2=-\frac{1}{2}(3)+c \\ & c=\frac{7}{2} \\ & y=-\frac{1}{2} x+\frac{7}{2} \end{aligned}$	\checkmark A substitution of point (3;2) \checkmark CA answer	(4)
4.4	$\begin{aligned} & \mathrm{R}(7 ; 0) x \text { int of } \mathrm{BC} \\ & B R^{2}=(7-3)^{2}+(0-2)^{2}=20 \\ & (x-7)^{2}\left\{+(y-0)^{2}=20\right. \end{aligned}$	$\checkmark \mathrm{CA}$ for $7 \checkmark \mathrm{~A}$ for 0 coordinates of R \checkmark CA subst. into distance formula \checkmark CA radius value \checkmark CA answer	(5)
4.5	$m_{P S}=-\frac{1}{2}$ $\therefore P S / / C B \quad$ equal gradients	$\checkmark \mathrm{A} \checkmark \mathrm{A}$ gradient of PS \checkmark A PS//CB	
	$\mathrm{A}(1 ;-2) \quad$ midpoint formula Since the y-coordinates of A and P is -2 Therefore AC//SR	\checkmark A coordinates of A \checkmark A Reasoning	
	OR $\begin{aligned} & \mathrm{m}_{\mathrm{AC}}=0 \ldots(\text { both } \mathrm{y} \text { values are the same }) \\ & \mathrm{m}_{\mathrm{SR}}=0 \ldots(x \text {-axis }) \\ & \therefore \mathrm{m}_{\mathrm{AC}}=\mathrm{m}_{\mathrm{SR}} \\ & \therefore \mathrm{AC} / / \mathrm{SR} \end{aligned}$	\checkmark A Statement \checkmark A Reason \checkmark A Statement \checkmark A Reason $\checkmark \mathrm{A} \mathrm{m}_{\mathrm{AC}}=\mathrm{m}_{\mathrm{SR}}$	(5) [18]

QUESTION 5

5.2.1	$\begin{aligned} & \frac{\cos 99^{\circ}}{\cos 33^{\circ}} \frac{-\sin 99^{\circ}}{\sin 33^{\circ}} \\ & =\frac{\cos 99^{\circ} \sin 33^{\circ}-\sin 99^{\circ} \cos 33^{\circ}}{\cos 33^{\circ} \sin 33} \\ & \frac{-\left[\sin 99^{\circ} \cos 33^{\circ}-\cos 99^{\circ} \sin 33^{\circ}\right]}{\cos 33^{\circ} \sin 33^{\circ}} \\ & =\frac{-\sin \left(99^{\circ}-33^{\circ}\right)}{\cos 33^{\circ} \sin 33^{\circ}} \\ & =\frac{-\sin 66^{\circ}}{\cos 33^{\circ} \sin 33^{\circ}} \\ & =\frac{-2 \sin 33^{\circ} \cos 33^{\circ}}{\cos 33^{\circ} \sin 33^{\circ}} \\ & =-2 \end{aligned}$	\checkmark A Simplification \checkmark A Taking negative sign out $\checkmark \mathrm{A} \sin \left(99^{\circ}-33^{\circ}\right)$ $\checkmark \mathrm{A} \sin 66^{\circ}$ \checkmark A $2 \sin 33^{\circ} \cos 33^{\circ}$ \checkmark A answer	(6)
5.2.2	$\begin{aligned} & =\frac{-\cos 40^{\circ}-(\cos \theta)}{\sin 50^{\circ}+\cos \theta} \\ & =\frac{-\cos 40^{\circ}-(\cos \theta)}{\cos 40^{\circ}+\cos \theta}=\frac{-\left(\cos 40^{\circ}+\cos \theta\right)}{\left(\cos 40^{\circ}+\cos \theta\right)} \\ & =-1 \end{aligned}$	$\checkmark \mathrm{A}-\cos 40^{\circ}$ \checkmark A $\cos \theta$ (numerator) $\checkmark \mathrm{A} \sin 50^{\circ}$ $\checkmark \cos \theta$ (denominator) \checkmark CA answer	(5)
5.3	$\begin{aligned} \frac{2 \sin ^{2} x}{2 \tan x-\sin 2 x} & =\frac{\cos x}{\sin x} \\ & =\frac{2 \sin ^{2} x}{\frac{2 \sin x}{\cos x}-2 \sin x \cos x} \\ & =\frac{\frac{2 \sin x-2 \sin x \cos ^{2} x}{\cos x}}{2} \\ & =\frac{2 \sin ^{2} x \cdot \cos x}{2 \sin x-2 \sin x \cos ^{2} x} \\ & =\frac{2 \sin 2 x \cos x}{2 \sin x\left[1-\cos { }^{2} x\right]} \\ & =\frac{2 \sin x \cos x}{\sin 2} \\ & =\frac{\cos x}{\sin x} \\ & =R H S \end{aligned}$	$\checkmark \mathrm{A}^{2 \sin x \cos x}$ $\checkmark \mathrm{A}^{\frac{\sin x}{\cos x}}$ \checkmark A Simplification \checkmark A removal of common factor of $2 \sin x$ $\checkmark \mathrm{A} \frac{\frac{\sin x \cos x}{\sin ^{2} x}}{\text { 解 }}$	(5)

5.4	$\begin{aligned} & 8 \sin \theta \cos \theta=-2 \sqrt{3} \\ & \frac{8 \sin \theta \cos \theta}{4}=\frac{-2 \sqrt{3}}{4} \\ & 2 \sin \theta \cos \theta=\frac{-\sqrt{3}}{2} \\ & \operatorname{Sin} 2 \theta=\frac{-\sqrt{3}}{2} \\ & \text { reference angle }=60^{\circ} \\ & 2 \theta=\left(180^{\circ}+60^{\circ}\right)+k \cdot 360^{\circ}, k \in Z \\ & 2 \theta=240^{\circ}+k \cdot 360^{\circ}, k \in Z \\ & \theta=120^{\circ}+k \cdot 180^{\circ}, k \in Z \end{aligned}$ OR $\begin{aligned} & 2 \theta=\left(360^{\circ}-60^{\circ}\right)+k \cdot 360^{\circ}, k \in \mathrm{Z} \\ & 2 \theta=300^{\circ}+k \cdot 360^{\circ}, k \in \mathrm{Z} \\ & \theta=150^{\circ}+k \cdot 180^{\circ}, k \in \mathrm{Z} \end{aligned}$	\checkmark A dividing by 4 both sides $\checkmark \mathrm{A} 2 \sin \theta \cos \theta=\sin 2 \theta$ \checkmark A 60° \checkmark CA 240° \checkmark CA $\theta=120^{\circ}+k .180^{\circ}, k \in Z$ \checkmark CA 300° \checkmark CA $\theta=150^{\circ}+k .180^{\circ}, k \in \mathrm{Z}$	(7)
			[29]

QUESTION 6

6.1

\checkmark A shape of f \checkmark A shape of g $\checkmark \checkmark$ A A asymptotes \checkmark A x-intercepts of f \checkmark A Turning points of f \checkmark A x-intercepts of g \checkmark A 3 intersection points

6.2	the graphs intersect at A, B and C. At A we have $x=34^{\circ}$, at C we have $x=90^{\circ}$ and by using symmetry we get at $\mathrm{B}, x=180^{\circ}-34^{\circ}=$ 146°.	\checkmark A using symmetry		
\checkmark A answer				
Answer only full marks			\quad	(2)
---:				

QUESTION 7 As a result of the typographical error in the question paper this question will not be marked - Total of paper will now be 144 marks but must be converted to $\mathbf{1 5 0}$ for recording purposes)

7.		$\begin{aligned} & \checkmark \tan \mathrm{y}=\frac{h}{P Q} \\ & \checkmark \mathrm{PQ}=\frac{h \cos y}{\sin y} \\ & \checkmark \mathrm{PQR}=90^{\circ}-2 y \\ & \checkmark \text { applying sine rule } \\ & \checkmark \sin \left(90^{\circ}-y\right)=\cos y \\ & \checkmark \operatorname{subt} \mathrm{PQ}=\frac{h \cos y}{\sin y} \end{aligned}$	[6]

QUESTION 8

8.1	$\mathrm{BC}=15 \mathrm{~cm}$ line from centre \perp chord	$\checkmark \checkmark$ A A S \&	(2)
8.2	$\mathrm{OC}=2 a$	\checkmark A answer	(1)
8.3	$\mathrm{OB}=3 a$	\checkmark CA answer	(1)
8.4	$\begin{aligned} & \therefore(3 a)^{2}=(2 a)^{2}+(15)^{2} \quad \text { (Pythagoras) } \\ & \therefore 9 a^{2}=4 a^{2}+225 \\ & \therefore 5 a^{2}=225 \\ & \therefore a^{2}=45 \\ & \therefore a=\sqrt{45} \end{aligned}$ $\begin{aligned} \mathrm{AB}^{2} & =15^{2}+(5 a)^{2} \quad \text { (Pythagoras) } \\ & =225+25(45) \\ \therefore \quad \mathrm{AB} & =\sqrt{1350}=15 \sqrt{6} \end{aligned}$	\checkmark CA applying Pythagoras $\checkmark \mathrm{CA} a=\sqrt{45}$	

8.5	$=\quad 36,7 \mathrm{~cm}$	\checkmark CA answer	(3)
	$\mathrm{ACB}=90^{\circ}$ $\therefore \mathrm{AB}$ is a diameter of circle CAB [converse of angle in semi circle] $\begin{aligned} \therefore \text { Radius } & =\frac{1}{2} \text { diameter } \\ & =\frac{1}{2} 36,7 \mathrm{~cm} \end{aligned}$	\checkmark A Reason	
	$=18,4 \mathrm{~cm}$	\checkmark CA answer	$\begin{aligned} & (2) \\ & {[9]} \\ & \hline \end{aligned}$

QUESTION 9

9.1	Construction: Draw AO and CO $\text { Proof: } \begin{aligned} & \hat{\mathrm{O}}_{1}=2 \hat{\mathrm{~B}} \ldots \angle \text { at centre }=2 \angle \text { at circle } \\ & \hat{\mathrm{O}}_{2}=2 \hat{\mathrm{D}} \ldots \angle \text { at centre }=2 \angle \text { at circle } \\ & \hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=360^{\circ} \\ & 2 \hat{\mathrm{~B}}+2 \hat{\mathrm{D}}=360^{\circ} \\ & \hat{\mathrm{B}}+\hat{\mathrm{D}}=180^{\circ} \end{aligned}$	\checkmark A Construction \checkmark A S/R \checkmark A S/R $\checkmark \mathrm{A} \hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=360^{\circ}$ (revolution) \checkmark A Substitute for $\hat{\mathrm{O}}_{1}$ and $\hat{\mathrm{O}}_{2}$	(5)
9.2.1	$\begin{aligned} & \hat{K}_{1}=x=\hat{K}_{2} \ldots \text { KM bisects L } \hat{K} \mathrm{~N} \\ & \hat{O}_{1}=2 x \quad \text { angles opp }=\text { sides } \\ & \therefore \hat{L}=x \quad \angle \text { at centre }=2 \angle \text { at circumference } \\ & \therefore \hat{K}_{1}=\quad \hat{L}=x \\ & \therefore \text { TK }=\text { TL } \quad \text { (sides opposite equal angles) } \end{aligned}$	(All Accuracy Marks) $\begin{gathered} \checkmark S \quad \checkmark R \\ \checkmark S \quad \checkmark R \end{gathered}$ $\checkmark \mathrm{R}$	(5)

9.2.2	$\hat{T}_{1}=2 x \ldots$ ext \angle of $\Delta \mathrm{QKL}$ $\hat{T}_{1}=\hat{O}_{1}=2 x$ \therefore KOTP is a cyclic quadrilateral \ldots converse of \angle 's on the same segment equal.		(3)
9.2.3	$\hat{\mathrm{P}}_{1}=\mathrm{L} \hat{\mathrm{K}} \mathrm{N} . .$. Angles in the same segment $=2 x$ $\therefore \hat{\mathrm{P}}_{1}=\hat{\mathrm{T}}=2 x$ $\therefore \mathrm{PN} / / \mathrm{MK} . .$. alt \angle 's proved equal		(3)
			[16]

QUESTION 10

QUESTION 11

11.1 In Δ PAT and Δ PCA 1. \hat{P} is common 2. $\hat{A}_{1}=\hat{C}_{1}$ tan chord thrm. $3 P \hat{T} A=P \hat{A} C$ sum of angles in triangle $\therefore \triangle \mathrm{PAT} / / / \triangle \mathrm{PCA}((\angle \angle \angle)$ $\therefore \frac{\mathrm{PA}}{\mathrm{PC}}=\frac{\mathrm{PT}}{\mathrm{PA}}\left(/ / / \Delta \Delta^{\prime} \mathrm{s}\right)$ $\therefore \mathrm{PA}^{2}=\mathrm{PC} . \mathrm{PT}$	\checkmark S (identifying triangles) \checkmark S \checkmark S \checkmark S/R \checkmark S All accuracy marks	(5)
11.2 $\begin{aligned} & \mathrm{PA}^{2}=\mathrm{PC} \cdot \mathrm{PT} \\ & \therefore 36=(x+5) x \\ & \therefore 36=x^{2}+5 x \\ & \therefore x^{2}+5 x-36=0 \end{aligned}$	\checkmark A subst. \checkmark A simplifying	(2)
$\begin{array}{cl} 11.3 & (x+9)(x-4)=0 \\ & x=-9 \text { or } x=4 \\ \text { N/A } \\ \therefore \text { PT }=4 \text { units } \end{array}$	\checkmark A factorising $\checkmark \mathrm{A}$ PT $=4$	(2)
11.4 $\frac{\mathrm{PD}}{\mathrm{PA}}=\frac{\mathrm{PT}}{\mathrm{PC}} \quad(\mathrm{AC} / / \mathrm{DB}$; prop. theorem) $\begin{aligned} \mathrm{DP} & =\frac{4}{9} \cdot 6 \\ & =\frac{8}{3} \end{aligned}$	$\checkmark S \checkmark R$ \checkmark CA answer	(3) [12]

